Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochem Biophys Res Commun ; 523(4): 835-840, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31954512

RESUMO

The 26S proteasome is the major degradation machinery for soluble proteins in eukaryotes. Recent evidence reveals the existence of an alternative ATP-powered protein degradation complex, the Cdc48-20S proteasome complex, and we have identified yeast Sod1, a copper-zinc superoxide dismutase, as an endogenous substrate protein. Here, we identified yeast Ths1, an essential threonyl tRNA synthetase, as another endogenous substrate protein of the Cdc48-20S proteasome. In order to analyze the degradation mechanism in more details, we established an in vitro degradation system reconstituted using purified yeast components. Recombinant Sod1 and Ths1 directly interacted with Cdc48, and were degraded in a Cdc48-20S proteasome-dependent manner. Because the substrate proteins were purified from E. coli cells, no eukaryotic modifications including ubiquitination and phosphorylation exist. Therefore, although the 26S proteasome requires ubiquitination for specific recognition of the substrate proteins, the Cdc48-20S proteasome can degrade a class of substrate proteins without any modifications.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Escherichia coli/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
2.
J Matern Fetal Neonatal Med ; 33(7): 1151-1156, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30149736

RESUMO

Objective: To elucidate the efficacy of continuous amnioinfusion on perinatal outcome in women with preterm premature rupture of membranes (PPROM) at periviable gestational ages.Methods: A database was reviewed to identify women with singleton pregnancies who were admitted to the Japanese Red Cross Nagoya Daiichi Hospital due to PPROM before 26 + 0-week gestation between July 2009 and July 2017.Results: A total of 81 women met the criteria for inclusion in this study including 70 and 11 women with and without amnioinfusion, respectively. The latency period between PPROM and delivery was significantly longer in women who underwent amnioinfusion compared with women without amnioinfusion (median: 13 versus 4 days, p < .001). In the survival analysis, the number of women who remained undelivered was significantly higher in the amnioinfusion group than in the non-amnioinfusion group for each gestational age after PPROM (p < .001). Cox's proportional hazards analysis with stepwise backward selection showed that both white blood cell counts on admission and amnioinfusion finally remained as variables that affected the time interval between PPROM and delivery [hazard ratio (95% confidence interval): 1.12 (1.06-1.18) and 0.34 (0.12-0.98), respectively].Conclusions: Continuous amnioinfusion in women with PPROM at periviable gestational ages resulted in significant prolongation of pregnancy and may help improve neonatal outcomes.


Assuntos
Ruptura Prematura de Membranas Fetais/terapia , Segundo Trimestre da Gravidez , Solução Salina/administração & dosagem , Adulto , Âmnio , Feminino , Idade Gestacional , Humanos , Gravidez , Estudos Retrospectivos
3.
J Biochem ; 167(3): 279-286, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804690

RESUMO

Dynamic functionality of mitochondria is maintained by continual fusion and fission events. A mitochondrial outer membrane protein Fzo1 plays a pivotal role upon mitochondrial fusion by homo-oligomerization to tether fusing mitochondria. Fzo1 is tightly regulated by ubiquitylations and the ubiquitin-responsible AAA protein Cdc48. Here, we show that a Cdc48 cofactor Ubx2 facilitates Fzo1 turnover. The Cdc48-Ubx2 complex has been shown to facilitate degradation of ubiquitylated proteins stacked at the protein translocation complex in the mitochondrial outer membrane by releasing them from the translocase. By contrast, in the degradation process of Fzo1, the Cdc48-Ubx2 complex appears to facilitate the degradation-signalling ubiquitylation of the substrate itself. In addition, the Cdc48-Ubx2 complex interacts with Ubp2, a deubiquitylase reversing the degradation-signalling ubiquitylation of Fzo1. These results suggest that the Cdc48-Ubx2 complex regulates Fzo1 turnover by modulating ubiquitylation status of the substrate.


Assuntos
Proteínas de Transporte/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/genética , Endopeptidases/genética , Endopeptidases/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação/genética , Proteína com Valosina/genética
4.
Mol Cell ; 76(1): 191-205.e10, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31445887

RESUMO

Normal mitochondrial functions rely on optimized composition of their resident proteins, and proteins mistargeted to mitochondria need to be efficiently removed. Msp1, an AAA-ATPase in the mitochondrial outer membrane (OM), facilitates degradation of tail-anchored (TA) proteins mistargeted to the OM, yet how Msp1 cooperates with other factors to conduct this process was unclear. Here, we show that Msp1 recognizes substrate TA proteins and facilitates their transfer to the endoplasmic reticulum (ER). Doa10 in the ER membrane then ubiquitinates them with Ubc6 and Ubc7. Ubiquitinated substrates are extracted from the ER membrane by another AAA-ATPase in the cytosol, Cdc48, with Ufd1 and Npl4 for proteasomal degradation in the cytosol. Thus, Msp1 functions as an extractase that mediates clearance of mistargeted TA proteins by facilitating their transfer to the ER for protein quality control.


Assuntos
Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/enzimologia , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
5.
Front Mol Biosci ; 5: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951484

RESUMO

The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.

6.
J Biochem ; 164(5): 349-358, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924334

RESUMO

Mitochondria continuously undergo coordinated fusion and fission during vegetative growth to keep their homogeneity and to remove damaged components. A cytosolic AAA ATPase, Cdc48, is implicated in the mitochondrial fusion event and turnover of a fusion-responsible GTPase in the mitochondrial outer membrane, Fzo1, suggesting a possible linkage of mitochondrial fusion and Fzo1 turnover. Here, we identified two Cdc48 cofactor proteins, Ubp3 and Ubx2, involving mitochondria regulation. In the absence of UBP3, mitochondrial fragmentation and aggregation were observed. The turnover of Fzo1 was not affected in Δubp3, but instead a deubiquitylase Ubp12 that removes fusion-required polyubiquitin chains from Fzo1 was stabilized. Thus, excess amount of Ubp12 may lead to mitochondrial fragmentation by removal of fusion-competent ubiquitylated Fzo1. In contrast, deletion of UBX2 perturbed disassembly of Fzo1 oligomers and their degradation without alteration of mitochondrial morphology. The UBX2 deletion led to destabilization of Ubp2 that negatively regulates Fzo1 turnover by removing degradation-signalling polyubiquitin chains, suggesting that Ubx2 would directly facilitate Fzo1 degradation. These results indicated that two different Cdc48-cofactor complexes independently regulate mitochondrial fusion and Fzo1 turnover.


Assuntos
Proteínas de Transporte/metabolismo , Endopeptidases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Endopeptidases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
7.
Sci Rep ; 7(1): 5475, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710470

RESUMO

Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA proteins form a ring-shaped structure with a conserved aromatic amino acid residue that is essential for proper function. The threading mechanism hypothesis suggests that this residue guides the intrusion of substrate proteins into a narrow pore of the AAA ring, thereby becoming unfolded. By contrast, the aromatic residue in one of the two AAA rings of Cdc48 has been eliminated through evolution. Here, we show that artificial retrieval of this aromatic residue in Cdc48 is lethal, and essential features to support the threading mechanism are required to exhibit the lethal phenotype. In particular, genetic and biochemical analyses of the Cdc48 lethal mutant strongly suggested that when in complex with the 20S proteasome, essential proteins are abnormally forced to thread through the Cdc48 pore to become degraded, which was not detected in wild-type Cdc48. Thus, the widely applicable threading model is less effective for wild-type Cdc48; rather, Cdc48 might function predominantly through an as-yet-undetermined mechanism.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/metabolismo , Aminoácidos Aromáticos/genética , Mutação/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Proteína com Valosina/química , Proteína com Valosina/genética
8.
J Biol Chem ; 290(18): 11762-70, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25805498

RESUMO

The microtubule (MT) network is highly dynamic and undergoes dramatic reorganizations during the cell cycle. Dimers of α- and ß-tubulins rapidly polymerize to and depolymerize from the end of MT fibrils in an intrinsic GTP-dependent manner. MT severing by ATP-driven enzymes such as katanin and spastin contributes significantly to microtubule dynamics, and it has been shown that katanin p60, a AAA+ family protein, has ATPase and MT-severing activities. The mechanism of MT severing by katanin p60 is poorly understood, and the residues in katanin p60 and tubulins important for severing activity were therefore explored in this study. MT-severing activity, but not ATPase activity, was inhibited by mutations of the conserved aromatic residue and the flanking basic residues in the pore region of the katanin p60 hexameric ring. When the acidic residue-rich C-terminal unstructured segment of either α- or ß-tubulin was removed, polymerized MTs were resistant to katanin p60 treatment. Interactions between katanin p60 and the mutant MTs, on the other hand, were unaffected. Taken together, these findings led us to propose that the interactions between the positively charged residues of katanin p60 and the acidic tails of both tubulins are essential for efficient severing of MTs.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Aminoácidos Básicos , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Katanina , Dados de Sequência Molecular , Porosidade , Ouriços-do-Mar , Células Sf9 , Spodoptera
9.
Ultramicroscopy ; 146: 39-45, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24935612

RESUMO

Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 µm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 µm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ~3 µm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 µm in thickness, and may facilitate new research in cellular structural biology.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Saccharomyces cerevisiae/ultraestrutura , Processamento de Imagem Assistida por Computador
10.
J Struct Biol ; 187(2): 187-193, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24893221

RESUMO

Cdc48p is a highly conserved cytosolic AAA chaperone that is involved in a wide range of cellular processes. It consists of two ATPase domains (D1 and D2), with regulatory regions at the N- and C-terminals. We have recently shown that Cdc48p regulates mitochondrial morphology, in that a loss of the ATPase activity or positive cooperativity in the D2 domain leads to severe fragmentations and aggregations of mitochondria in the cytoplasm. We have now used serial block-face scanning electron microscopy (SBF-SEM), an advanced three-dimensional (3D) electron microscopic technique to examine the structures and morphological changes of mitochondria in the yeast Saccharomyces cerevisiae. We found that mutants lacking ATPase activity of Cdc48p showed mitochondrial fragmentations and aggregations, without fusion of the outer membrane. This suggests that the ATPase activity of Cdc48p is necessary for fusion of the outer membranes of mitochondria. Our results also show that SBF-SEM has considerable advantages in morphological and quantitative studies on organelles and intracellular structures in entire cells.


Assuntos
Adenosina Trifosfatases/química , Microscopia Eletrônica de Varredura , Mitocôndrias/ultraestrutura , Proteínas Nucleares/química , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/metabolismo , Citoplasma/enzimologia , Imageamento Tridimensional , Mitocôndrias/enzimologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Mutação , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína
11.
Biochem Biophys Res Commun ; 443(3): 997-1002, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24361883

RESUMO

Bcs1 is a transmembrane chaperone in the mitochondrial inner membrane, and is required for the mitochondrial Respiratory Chain Complex III assembly. It has been shown that the highly-conserved C-terminal region of Bcs1 including the AAA ATPase domain in the matrix side is essential for the chaperone function. Here we describe the importance of the N-terminal short segment located in the intermembrane space in the Bcs1 function. Among the N-terminal 44 amino acid residues of yeast Bcs1, the first 37 residues are dispensable whereas a hydrophobic amino acid in the residue 38 is essential for integration of Rieske Iron-sulfur Protein into the premature Complex III from the mitochondrial matrix. Substitution of the residue 38 by a hydrophilic amino acid residue affects conformation of Bcs1 and interactions with other proteins. The evolutionarily-conserved short α helix of Bcs1 in the intermembrane space is an essential element for the chaperone function.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Substituição de Aminoácidos , Reagentes de Ligações Cruzadas/farmacologia , Digitonina/farmacologia , Eletroforese em Gel de Poliacrilamida , Leucina/genética , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos
12.
Clin Exp Nephrol ; 18(4): 655-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24113781

RESUMO

BACKGROUND: Hypoalbuminemia caused by peritoneal dialysate protein loss, frequently occurs in patients on peritoneal dialysis (PD) and is associated with an increased risk of death. We investigate whether PD dialysis exchange volume (PD volume) could be reduced with tolvaptan (TVP) through increased urine volume (UV). METHODS: The study included 11 stable patients with oliguria undergoing PD. The following parameters were examined-diuretic response and the effect of TVP on peritoneal ultrafiltration (UF), body weight, serum albumin, sodium, arm muscle area (AMA), PD volume, dialysis efficiency calculator (K t/V), and urine and serum osmolarity (OSM). RESULTS: The average UV increased from 428 ± 178 to 906 ± 285 mL (p = 0.018 by paired t test). Average weekly PD volume decreased from 28,836 ± 5,699 to 23,872 ± 3,569 mL (p = 0.04 by paired t test). Average UF increased from 283 ± 147 to 575 ± 135 mL (p = 0.019 by paired t test). On the other hand, there was no significant difference in the average dialysate K t/V before and after TVP treatment. Serum sodium, AMA, and serum albumin levels were not statistically different before and after TVP treatment. The urine and serum OSM ratio of effective cases before TVP treatment was higher than that of ineffective cases (p = 0.024 by unpaired t test). CONCLUSION: Our results indicate that TVP is useful for patients on continuous ambulatory PD who have oliguria and high urine osmolarity. Furthermore, we can reduce PD volume to maintain their nutritional status.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Benzazepinas/uso terapêutico , Oligúria/terapia , Diálise Peritoneal Ambulatorial Contínua , Micção/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hipoalbuminemia/etiologia , Hipoalbuminemia/fisiopatologia , Hipoalbuminemia/prevenção & controle , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Oligúria/diagnóstico , Oligúria/fisiopatologia , Concentração Osmolar , Diálise Peritoneal Ambulatorial Contínua/efeitos adversos , Fatores de Tempo , Tolvaptan , Resultado do Tratamento , Urodinâmica/efeitos dos fármacos , Equilíbrio Hidroeletrolítico
13.
Mol Biol Cell ; 24(21): 3406-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006484

RESUMO

During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Sítios de Ligação/genética , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia de Fluorescência , Mutação , Pichia/genética , Ligação Proteica , Transporte Proteico/genética , Técnicas do Sistema de Duplo-Híbrido
14.
Mol Biol Cell ; 23(20): 3936-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22933571

RESUMO

The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a ß-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of ß-barrel proteins to the outer mitochondrial membrane.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
15.
J Struct Biol ; 179(2): 112-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580068

RESUMO

Cdc48p/p97 is a cytosolic essential AAA chaperone, which regulates multiple cellular reactions in a ubiquitin-dependent manner. We have recently shown that Cdc48p exhibits positively cooperative ATPase activity and loss of the positive cooperativity results in yeast cell death. Here we show that loss of the positive cooperativity of the yeast Cdc48p ATPase activity led to severe mitochondrial aggregation. The actin cytoskeleton and distribution of the ER-mitochondria tethering complex (ERMES) were eliminated from the cause of the mitochondrial aggregation. Instead, a mitochondrial outer membrane protein Fzo1p, which is required for mitochondrial fusion, and components of ERMES, which is involved in mitochondrial morphology, were remarkably stabilized in the Cdc48p mutants. In the last couple of years, it was shown that Vms1p functions as a cofactor of Cdc48p for the function of protein degradation of mitochondrial outer membrane proteins. Nevertheless, we found that Vms1p was not involved in the Cdc48p-dependent mitochondrial aggregation and loss of Vms1p did not significantly affect degradation rates of proteins anchored to the mitochondrial outer membrane. These results suggest that Cdc48p controls mitochondrial morphology by regulating turnover of proteins involved in mitochondrial morphology in a Vms1p-independent manner.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Degradação Associada com o Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína com Valosina
16.
J Struct Biol ; 179(2): 138-42, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22561316

RESUMO

Spastin belongs to the meiotic subfamily, together with Vps4/SKD1, fidgetin and katanin, of AAA (ATPases associated with diverse cellular activities) proteins, and functions in microtubule severing. Interestingly, all members of this subgroup specifically contain an additional α-helix at the very C-terminal end. To understand the function of the C-terminal α-helix, we characterised its deletion mutants of SPAS-1, a Caenorhabditis elegans spastin homologue, in vitro and in vivo. We found that the C-terminal α-helix plays essential roles in ATP binding, ATP hydrolysing and microtubule severing activities. It is likely that the C-terminal α-helix is required for cellular functions of members of meiotic subgroup of AAA proteins, since the C-terminal α-helix of Vps4 is also important for assembly, ATPase activity and in vivo function mediated by ESCRT-III complexes.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Plasma Seminal/química , Proteínas de Plasma Seminal/metabolismo , Animais , Linhagem Celular , Cromatografia em Gel , Humanos , Proteínas Mitocondriais/genética , Proteínas de Plasma Seminal/genética , Espectrometria de Fluorescência
17.
J Struct Biol ; 179(2): 143-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575764

RESUMO

Fidgetin is a member of the AAA (ATPases associated with diverse cellular activities) chaperones. It is well-known that the specific function of a given AAA protein primarily depends upon its subcellular localization and interacting partners. FIGL-1, a Caenorhabditis elegans homolog of mammalian fidgetin, is localized in the nucleus. Here, we identified that the N-terminal PKRVK sequence of FIGL-1 functions as a monopartite nuclear localization signal. Nuclear localization of FIGL-1 is required for its function. We also found that FIGL-1 specifically interacted with SMO-1, a C. elegans homolog of small ubiquitin-like modifier (SUMO), using a yeast two-hybrid assay. Furthermore, the direct physical interaction between FIGL-1 and SMO-1 was demonstrated by pull-down assay using purified proteins as well as immunoprecipitation assay using lysates from epitope-tagged SMO-1-expressing worms. Binding of FIGL-1 to SMO-1 is required for its function. The depletion of FIGL-1 and SMO-1 resulted in developmental defects in C. elegans. Taken altogether, our results indicate that FIGL-1 is a nuclear protein and that in concert with SMO-1, FIGL-1 plays an important role in the regulation of C. elegans development.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteína SUMO-1/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Proteínas Nucleares , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteína SUMO-1/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo
18.
J Biol Chem ; 286(18): 15815-20, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454554

RESUMO

p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by different mechanisms because a noncooperative mutant still showed the coordination. Interestingly, the growth speed of yeast cells strongly related to the positive cooperativity rather than the ATPase activity itself, suggesting that the positive cooperativity is critical for the essential functions of p97.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
19.
Proc Natl Acad Sci U S A ; 108(1): 91-6, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173275

RESUMO

Mitochondria import most of their resident proteins from the cytosol, and the import receptor Tom20 of the outer-membrane translocator TOM40 complex plays an essential role in specificity of mitochondrial protein import. Here we analyzed the effects of Tom20 binding on NMR spectra of a long mitochondrial presequence and found that it contains two distinct Tom20-binding elements. In vitro import and cross-linking experiments revealed that, although the N-terminal Tom20-binding element is essential for targeting to mitochondria, the C-terminal element increases efficiency of protein import in the step prior to translocation across the inner membrane. Therefore Tom20 has a dual role in protein import into mitochondria: recognition of the targeting signal in the presequence and tethering the presequence to the TOM40 complex to increase import efficiency.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Imunoprecipitação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae
20.
Biochem Cell Biol ; 88(1): 109-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20130684

RESUMO

Cdc48p/p97 is a highly conserved essential AAA protein that is required for many cellular processes, and is identified as a causative gene for an autosomal dominant human disorder, inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). Cdc48p/p97 is composed of an N-terminal domain, followed by two AAA domains (D1 and D2) whose ATPase activities have been characterized extensively. In this study, effects of mutations on the essential functions of yeast Cdc48p/p97 in vivo were systematically analyzed. IBMPFD-related mutations do not affect the essential functions of Cdc48p/p97. Loss of ATPase activity of D2 leads to loss of function of the protein in vivo. In contrast, ATPase activity of D1 per se is not essential, but a mutation locking D1 in an ATP-bound form is exceptionally lethal. Site-directed and random mutagenesis analyses suggest that the ATP-bound form of D1 changes an inter-domain interaction, thereby perturbing an essential function of Cdc48p/p97.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...